
PROXEMICS GUIDE - REU 2017 1

Proxemics Guide
REU 2017

T.A. Nguyen

tnguyen@ict.usc.edu

PROXEMICS GUIDE - REU 2017 2

Summary

Proxemics is a Python package that was designed for analyzing positional data of users

interacting with Brad and Rachel. It leverages a powerful data analysis library called pandas

(version 0.20.3). The primary functions of Proxemics are calculating and plotting position and

speed.

How Proxemics.py developed

Proxemics was developed over the course of nearly 6 weeks during the summer of REU 2017

under the guidance of Dr. Krum at the Mixed Reality Lab. The library makes use of pandas and

matplotlib to organize tracking data collected in the Fall of 2016.

Developing Proxemics involved several major hurdles including:

• Learning pandas and using pandas functions correctly (many hours were spent reading

forums – Reddit, Quora, Stack Overflow- to produce desired graphs with the desired

characteristics).

• Learning matplotlib and a bit about numpy. This process likewise involved many, many hours

reading documentation and testing out code.

• Defining questions of interest and letting the data inform what questions are worth asking

• Determining what constitutes stillness and what constitutes movement (setting 0 m/s as

stillness didn’t work as even a slight head wobble could result in a speed > 0 m/s).

• Calculating speed and setting an appropriate threshold speed to detect user motion

• Last but not least, testing and debugging the library to make sure it’s robust enough to

handle varying data

PROXEMICS GUIDE - REU 2017 3

Pandas in a nutshell

Pandas is an open source data analysis library that is suitable for the following needs:

• Reading and writing data from CSV, txt and other file formats

• Aligning, indexing, and reshaping data

• Performing operations on large data sets (pivoting, merging, etc)

Pandas offers two data structures to organize data. A pandas Series may be thought of as a

labeled Python dict. The following example from official pandas documentation illustrates a

Series:

The index parameter allows users to label individual data points. To access data, instead of

relying on integer indices (like in a Python list), you can access data using the custom index.

Pretty cool!

For large and complex data sets, pandas provides a DataFrame data structure. A DataFrame is

a 2D object that resembles a spreadsheet. Rows (called the ‘index’) and columns make up a

DataFrame, and are used to access data in the set. A DataFrame can be made from a list of

dicts, a group of Series, and a couple additional methods.

PROXEMICS GUIDE - REU 2017 4

The method used by Proxemics was read_csv(), which automatically parsed thousands of data

points from a CSV file into a single DataFrame. This efficiency is a major reason why pandas was

used to build Proxemics!

import pandas as pd

df = pd.read_csv("0040_PrimingJoystickWalking.csv", skiprows = 1)

Original Excel

CSV file

PROXEMICS GUIDE - REU 2017 5

Just as there are multiple ways to instantiate a DataFrame, there are several ways to access

data from a DataFrame.

The two slicing methods used for Proxemics are indicated by the arrows. In addition, Proxemics

borrows plotting methods from pandas, which provide all the functionality of matplotlib.

To generate a plot from a DataFrame, only x and y data labels are required (column names can

be supplied, which is a major advantage compared to plotting using matplotlib, which requires

numpy arrays or lists as inputs). Optional parameters customize the plot (linewidth, title, etc).

df.plot('time-seconds', 'hmd-from-origin', c = ‘orange’, linewidth=3.0)

PROXEMICS GUIDE - REU 2017 6

Tutorial

Proxemics was built using Spyder, a powerful IDE designed for scientific applications. In addition,

Spyder was created to support matplotlib and features an interactive Python interpreter

(IPython). We will be using IPython to execute all our commands. To use the Proxemics library,

download Spyder through Anaconda: https://pythonhosted.org/spyder/installation.html

1. After installing Anaconda, search for the Anaconda Navigator. If your machine runs Windows

10, just type in “anaconda” in the Windows search bar. Hit Enter to open the Navigator.

2. Click on the Launch button beneath the Spyder icon. An alternative is to simply type “spyder”

into the Windows search bar and launch the IDE.

3. Open Proxemics.py in Spyder.

4. Specify the directory where data files are found. Use double backslashes.

Directory of data files

https://pythonhosted.org/spyder/installation.html

PROXEMICS GUIDE - REU 2017 7

os.chdir changes current working directory to the path specified

5. Run Proxemics.py script by pressing the F5 key. A runfile command will appear in the

IPython console.

PROXEMICS GUIDE - REU 2017 8

6. Instantiate a Proxemics object by providing a desired file name. To begin data analysis, call

remove_data_pretrial().

7. Call any function in Proxemics using dot notation. For example, to plot data from

VHumanWalkl trials, type [object].plot_vhw() into IPython.

prx = Proxemics(“0040_PrimingJoystickWalking.csv”)

prx.remove_data_pretrial()

prx.plot_vhw()

PROXEMICS GUIDE - REU 2017 9

8. Be default, plots created in Spyder will appear inside the IPython console. To make plots

appear as separate windows, go to Tools > Preferences > IPython console. Navigate to the

Graphics tab and change “Inline” to “Automatic”. Hit OK.

PROXEMICS GUIDE - REU 2017 10

9. To generate a csv for analysis in SPSS, open vhw_csv.py. Again, specify the working directory.

Be sure to modify the files variable to the desired working directory as well.

10. The resulting csv will appear in the working directory as out.csv.

PROXEMICS GUIDE - REU 2017 11

API Reference

Objects of Proxemics all have the following attributes:

• self.file : name of data file as a string (must end with “.csv”)

• self.df : a pandas DataFrame object with all proxemics data in the file

• self.trials : a tuple of trials listed in the order of the experiment (i.e. (“BeBehindDoor”,

“BeBehindDoorJoystick”) and vice versa)

Processing Data

times_list(): returns a list of all timestamps

get_begin_index(): returns row number in self.df that marks when the first trial began

remove_data_pretrial(): deletes all data from phases before the first trial (i.e. StandFar,

JoyTraining, etc). This function must be called after instantiating a Proxemics object.

times_by_phase(): returns a dictionary of time intervals corresponding to each phase of an

experiment. The format of the dictionary is: {phase: (phase start time, phase end time)}.

The first VHumanWalk phase is denoted VHumanWalk1 and the second VHumanWalk

phase is denoted VHumanWalk2.

relative_zeros_by_phase(): leverages time_by_phase() to make a dictionary of times relative

to the start time of the first trial. i.e.: Let’s say the first trial starts at 300s and

time_by_phase() returns {VHumanWalk: (800, 1000)}. relative_zeros_by_phase() would

return {VHumanWalk1: (500, 700)}.

trialdf(trial_num): trial_num takes either a 1 or 2 as input. Returns a DataFrame of the

specified trial. Used as a helper function.

speed_human_trial(trial_num = 1): returns a list of lists in the following format: [list of times, list

of speeds sampled pair-wise].

time_speed_human(): returns a list of lists in the following format: [list of times, list of speeds

sampled pair-wise, list of teleportation times].

time_window_speed_human(window_size = 350, threshold_speed = 0.04): makes use of

time_speed_human() to sample speed according to given window_size. The mean speed

across a sliding window is stored in a list. The middle timestamp is stored in a separate list

at the same index. Returns a list of lists: [window_times, mean_spd_window]

PROXEMICS GUIDE - REU 2017 12

Plotting Data

stand_still(window_size = 350, threshold_speed = 0.04): makes use of

time_window_speed_human() to return a list of times in which subject stood still. i.e.: [(still

start time, still end time)]. Plots hmd-from-origin against time and annotates times in which

subject stood still. Orange indicates start time, red indicates end time.

plot_by_phase(phase_input = None): plots hmd-from-origin against time for phase specified

in phase_input as a string. To inspect VHumanWalk, trial number must be specified (i.e. :

“VHumanWalk1”). By default, all phases will be displayed in separate windows.

prx.plot_by_phase()

prx.stand_still(400, 0.04)

PROXEMICS GUIDE - REU 2017 13

PROXEMICS GUIDE - REU 2017 14

plot_vhw(): plots VHumanWalk1 and VHumanWalk2 in separate windows. The x-axis is time-

seconds and y-axis is distance-meters (from origin). The plots are annotated with arrows

and text indicating average distance maintained between hmd and vhuman. If subject

reacted to vhuman walking, the distance subject withdrew is also annotated.

The following example shows VHumanWalk for both trials. Subject does not move in response to

vhuman walking in the second trial, so only average distance maintained is annotated.

prx = Proxemics(“0040_PrimingJoystickWalking.csv”)

prx.remove_data_pretrial()

prx.plot_vhw()

PROXEMICS GUIDE - REU 2017 15

plot_trials: plots each trial in a separate window. Hmd-from-origin and vhuman-from-origin

are plotted against time for both trials. Uses trialdf().

hum_vhum_pos(self, trial_num = None): plots hmd-from-origin and vhuman-from-origin as

scatterplots on the same graph. The x-axis corresponds to x coordinates of both agents and the

y-axis corresponds to z coordinates of both agents. If no trial_num is specified, both plots will be

displayed on separate windows (trial number indicated in titles). Vhuman is shown in blue,

subject is shown in grey.

 prx.hum_vhum_pos()

PROXEMICS GUIDE - REU 2017 16

PROXEMICS GUIDE - REU 2017 17

Helper Functions

Additional Notes

Neglecting Teleportation

In the study, a reset was done in between each trial, which instantly ‘repositioned’ the subject. In

analyzing the speed of the user, teleportation had to be filtered out. Below is a plot of distance-

meters against time-seconds with teleportation highlighted by the red box. Teleportation was

defined as ≥ 10 m/s.

Calculating Speed and Stillness

Speed was first calculated pair-wise, using hmd-from-origin and time-seconds data. Let’s

pretend the following table belongs in the Proxemics data set.

time-seconds hmd-from-origin

1 2

2 1.5

3 1

4 0.5

5 0.25

6 0.2

PROXEMICS GUIDE - REU 2017 18

Pair-wise speed calculations would yield the following result:

 𝑠𝑝𝑒𝑒𝑑 =
∆ ℎ𝑚𝑑−𝑓𝑟𝑜𝑚−𝑜𝑟𝑖𝑔𝑖𝑛

∆ 𝑡𝑖𝑚𝑒−𝑠𝑒𝑐𝑜𝑛𝑑𝑠

time-seconds hmd-from-origin pairwise speed

1 2

2 1.5 -0.5 m/s

3 1.3 -0.2 m/s

4 1.2 -0.1 m/s

5 0.25 -0.95 m/s

6 0.2 -0.05 m/s

Since tracking data was recorded at 90 Hz, the pairwise speed calculations were approximately

0 m/s, but not exactly zero. To detect stillness, a sliding average (window) was used to smooth

out the speed calculations. The window_size parameter in Proxemics corresponds to the number

of pair-wise speeds to be averaged. Using the previous data set with a window size of 3 results in

the following “window-speed” calculations:

time-seconds hmd-from-origin pairwise speed window-speed(3)

1 2 0 m/s

2 1.5 -0.5 m/s -0.23 m/s

3 1.3 -0.2 m/s -0.27 m/s

4 1.2 -0.1 m/s -0.625 m/s

5 0.25 -0.95 m/s -0.37 m/s

6 0.2 -0.05 m/s

Fine-tuning this window-speed calculation involved examining several data sets and adjusting

athe window_size and threshold_speed parameters. Through a lot of trial and error, the best

representation of speed resulted when a window_size of 350 – 400 was used with a

threshold_speed of 0.04 m/s. The example below depicts stand_still(100, 0.05)

PROXEMICS GUIDE - REU 2017 19

Setting the window size to 400 and threshold speed to 0.04 m/s results in a much cleaner and

more accurate depiction of user stillness.

window size = 100,

threshold speed = 0.05

window size = 400,

threshold speed = 0.04

PROXEMICS GUIDE - REU 2017 20

Detecting Motion

Understanding how to represent stillness means that user motion can be detected by the

computer (using a window_size of 350 – 400) as:

• window speeds that exceed 0.04 m/s

• less than 10 m/s

The default window_size in Proxemics is 350.

Acknowledgements

Special thanks to:

• Dr. Krum

• Thai Pham

• Rhys Yahata

• Dr. Rosenberg

• Ryan Spicer

